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The radii of convergence of power series expansions describing energy of a molecule in
external electrostatic field are investigated using D’Alembert ratio test, standard and gener-
alized Cauchy–Hadamard criteria, and Padé approximants. The corresponding coefficients
at various field and field-gradient components, representing multipole moments and (hy-
per)polarizabilities and including terms of tenth or even twentieth order, are determined
using an ab initio linear response coupled-cluster theory. Most calculations are performed
for the HF molecule described by the basis set of double zeta quality, while the role of
basis set is discussed by comparing the results with estimates of the radii of convergence
obtained with the basis set of [5s3p2d/3s2p] quality. Emphasis is placed on the dependence
of the interval of convergence of power series expansion describing energy of a molecule
in applied electrostatic field on the nuclear geometry. The results might have important im-
plications for various numerical methods used to calculate electrostatic molecular properties
as functions of the internuclear geometry, including the finite-field and fixed-point-charge
approaches.

1. Introduction

The energy of a molecule in an external electrostatic field is usually represented
by a multiple power series in the components of the field and its gradients. Various
forms of this expansion exist in the literature, using either Cartesian [2,8,20,37] or
spherical tensor [19] formulations. In the following, we use Buckingham’s classical
expression, i.e., [8],
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where E(0) designates the energy of a molecule in the absence of the field, F =
(F 1,F 2,F 3) ≡ (F x,F y,F z) the Cartesian components of the field, and F ij the Carte-
sian components of the field gradient ∇F = ( ∂∂x , ∂

∂y , ∂
∂z )F, i.e.,

F ij =
∂F i

∂xj
=
∂F j

∂xi
(x1 = x, x2 = y, x3 = z),

calculated at the origin of the molecular coordinate system. Note that the Einstein
summation convention over repeated upper and lower indices is implied in equa-
tion (1). In general, the expansion (1) contains higher gradients of the field, i.e.,
∇nF = ( . . . ,F i1i2...in , . . . ), where

F i1i2...in =
∂n−1

∂xi1∂xi2 · · · ∂xin−1

F in = · · · = ∂n−1

∂xi2∂xi3 · · · ∂xin
F i1 ,

which are important to describe nonuniform electric fields. For spatially uniform fields,
characterized by the condition ∇F = 0, the only terms which do not vanish are those
involving field components F i, i = 1, 2, 3.

The coefficients in equation (1) designate permanent multipole moments (dipole
moment µ, traceless quadrupole moment Θ, etc.), polarizabilities (dipole polarizability
α, dipole-quadrupole polarizability A, quadrupole polarizability C, etc.), and various
hyperpolarizabilities (first dipole hyperpolarizability β, second dipole hyperpolariz-
ability γ, first dipole-dipole-quadrupole hyperpolarizability B, etc.), which describe
the response of a molecular charge cloud to an applied electric field. They can be
defined as derivatives of the energy E with respect to field components F i or their
gradients F ij... at the zero field (cf. equation (1)) or, alternatively, via the correspond-
ing quantum-mechanical expressions of the expectation value (for µ, Θ, etc.) or
sum-over-states (for α, A, C, β, γ, B, etc.) type (cf., e.g., [8,19,29]).

The fundamental role of these properties in the interpretation of molecular spectra
and description of intermolecular interactions is well known. Thus, various experi-
mental techniques have been designed to determine these quantities. An alternative
and quite often more reliable approach is to calculate multipole moments and (hy-
per)polarizabilities using standard ab initio methods of quantum chemistry [6,16]. In
this case, large and flexible basis sets must be used and electron correlation effects
need to be accounted for to obtain accurate results, particularly for higher-order prop-
erties, such as β or γ. In addition, ab initio determination of molecular properties
may require the inclusion of rovibrational corrections [7,16,18] and, in some cases, of
even relativistic effects (cf., e.g., [35]).

In both experimental determination of multipole moments and polarizabilities
and in various ab initio calculations based on equation (1), we silently assume that
the series (1) converges for the range of values of the electric field employed. Thus,
we trust that the truncated expansion (1) at a conveniently chosen term reasonably
approximates the actual energy of a molecule in the presence of external field. This
is, in fact, the fundamental principle of the widely used finite-field [13] and fixed-
point-charge [24] calculations of electrostatic molecular properties (cf., also, [16]).
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In the finite-field approach, properties are determined by calculating energies of a
molecule for a few suitably chosen values of the field or one or more of its gradients
followed by the subsequent numerical differentiation of the field-dependent energies
using one of the available interpolation techniques. In the fixed-point-charge method,
charges of variable magnitude are placed at various distances from a molecule in order
to generate external electrostatic field and properties are extracted from the relevant
energy expansions describing the interaction of a molecule with point charges.

Several problems may arise when one uses numerical differentiation of the type
employed in the finite-field approach. Clearly, the accuracy of the numerical differen-
tiation can be affected by the number of the employed field or field-gradient values and
by the magnitude of those fields. In addition, the results depend on the interpolation
technique employed and on the precision of the preceding energy calculations, particu-
larly when high-order properties need to be evaluated. For example, in the case of the
first and second hyperpolarizabilities β and γ, energy must be differentiated three and
four times, respectively, which means that we must use relatively large field values to
achieve reasonable accuracy (too small values of the field may result in a total loss
of accuracy when three- or four-fold differentiation is carried out; cf. [22]). It may
thus happen that the required field or field-gradient values fall outside the radius of
convergence of expansion (1), which puts the entire finite-field procedure in serious
doubt.

Even near yet within the radius of convergence, results from numerical differ-
entiation can be questionable. We observed this in our recent study on molecular
properties of HF, where we were unable to determine hyperpolarizabilities β and γ for
significant stretches of the H−F bond due to instabilities of numerical differentiation
procedure [22]. In this case, the components βzzz and γzzzz were shown to change by
a few orders of magnitude when the H−F bond was stretched, indicating a possibility
of a poor convergence of expansion (1) in this region and resulting in a total loss of
accuracy in the finite-field calculations. We can expect that quadrupolar analogs of β
and γ (for example, B; cf. equation (1)) are even more difficult to determine using
the finite-field method when chemical bonds are stretched or broken. This may pose
a serious problem for the reliability of finite-field calculations of property functions
describing the dependence of various molecular properties on nuclear geometry. The
same remark applies to calculations of property functions using the fixed-point-charge
method, since point charges may generate fields outside the range of convergence of
equation (1), making the truncated energy expansions used in the fixed-point-charge
method totally useless for any calculation. From this point of view, it is much better
to use the so-called “analytical” ab initio methods, such as the linear-response (LR)
coupled-cluster (CC) theory [21,22,25] employed in this paper, which eliminate the
need for numerical differentiation and which do not use the truncated equation (1).
In analytical approaches, the first and higher-order molecular properties are calculated
by solving the corresponding systems of equations for the relevant components of the
molecular electronic wave function (only those components which are needed to find
a given property; cf. [21,22] and references therein), thus putting aside the problem
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of convergence of equation (1) (the only assumption of analytical ab initio approaches
is that of the nonzero value of the radius of convergence of the series (1)).

It is the purpose of the present paper to examine the convergence of expansion (1)
by calculating its radii of convergence for the HF molecule. Two types of fields will
be considered, namely, the dipolar field along the internuclear axis and its quadrupolar
(field-gradient) analog. We are particularly interested in examining the radius of con-
vergence of equation (1) as a function of geometry of the HF molecule, which may
allow us to better understand the problems encountered by the finite-field approach
when higher-order property functions are to be determined.

Our work parallels to a certain extent the study by Larter and Malik [23], who
investigated the effects of nonuniform electric fields on the convergence of expan-
sion (1) for LiH. Although their main conclusion that the application of a field gradient
decreases the radius of convergence of expansion (1) regarded as a series in field com-
ponents F i, particularly for shorter internuclear distances, is likely to be a valid one,
the quantitative results could be of a concern. As the authors themselves acknowledge,
their estimates of the radii of convergence of equation (1) may not be very accurate
due to the low order of the multivariable rational approximants [12] employed in their
study. In fact, the [1/1] two-variable approximant used by Larter and Malik reduces
to the well-known [1/1] Padé approximant [3–5,39] when one of the two variables
(field or field-gradient component) is set to zero. It is often the case that the radius of
convergence of the resulting single variable series is not well approximated by the pole
of the [1/1] Padé approximant. It is usually conjectured that poles of the [L/L] Padé
approximants converge to singularities of the power series, which they approximate,
as L→∞ [3–5,39] (cf. section 2.1 for more details).

Already the qualitative results of the kind just mentioned may help one to un-
derstand the behavior of the fixed-point-charge method, in which the field and field-
gradient components cannot be separated in the calculation. However, in order to
better understand the behavior of the finite-field approach as well as of the fixed-point-
charge method, it is important to know a reasonably accurate value of the radius of
convergence of expansion (1). Moreover, in order to understand why the finite-field
approach usually breaks down for large internuclear separations, it is important to know
the radius of convergence for nonequilibrium geometries as well. We thus examine in
this paper the HF molecule for the equilibrium and very highly stretched geometries
(up to the five times the equilibrium H−F bond length). This would not have been
very meaningful in the above mentioned study of the LiH molecule [23], since the
authors relied on the multipole moment and (hyper)polarizability values obtained using
the derivative Hartree–Fock method of Dykstra and Jasien [17]. For large stretches of
chemical bonds, it becomes absolutely essential to use the correlated approach, such
as the size extensive coupled-cluster theory used in this study, as amply documented
in our recent papers on property functions of HF and N2 [22,33,38].

Similarly as for the general power series, the convergence of expansion (1) must
strongly depend on higher-order terms, which contain fifth and higher powers of the
field or field-gradient components. Truncation of the series (1) on quartic terms de-
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scribing hyperpolarizabilities γ may not always be sufficient to determine its radius
of convergence. In this study, we calculate terms containing sixth, seventh, and, in
some cases, even twentieth power of the field component employed, which allows
us to calculate radii of convergence of expansion (1) using different mathematical
techniques, including D’Alembert ratio test, Cauchy–Hadamard formula and its exten-
sions, and Padé approximants (see section 2.2). Calculation of the higher-order terms
in expansion (1) is made possible thanks to our recursive formulation of the LRCC
theory described in [22]. We thus hope that our estimates of the radii of convergence
of expansion (1) are sufficiently accurate to enable a meaningful assessment of the
behavior of expansion (1) for real molecular systems, such as the HF molecule.

2. Formal considerations

2.1. Determination of the energy expansion for a molecule in external electrostatic
field

As mentioned in the introduction, the purpose of the present paper is to estimate
the radii of convergence of expansion (1) for the HF molecule. We assume that
either a uniform electrostatic field along the internuclear axis (designated here by z)
or the zz field gradient are applied. The first case is characterized by the condition
F 1 = F 2 = F i1i2...in = 0, where i1, i2, . . . , in = 1, 2, 3 and n > 2, whereas in the
second case F i = F 11 = F 22 = F ij = F i1i2...in = 0, where i 6= j and n > 3. In either
case, equation (1) reduces to a power series in a single variable (designated by λ),

E(λ) =
∞∑
n=0

λnE(n), (2)

where for the uniform field case λ = F 3 ≡ F z and for the pure field-gradient zz
component λ = (1/3)F 33 ≡ (1/3)F zz . The coefficients E(n) can be identified as
follows. When λ = F z , we obtain

E(1) =−µz , (3)

E(2) =− 1
2αzz , (4)

E(3) =− 1
6βzzz , (5)

E(4) =− 1
24γzzzz, etc., (6)

whereas for λ = (1/3)F zz , we have

E(1) =−Θzz , (7)

E(2) =− 3
2Czz,zz, etc. (8)

Although the energy expansion (1) or its special case, equation (2), permit a purely
classical interpretation (they describe a response of a polarizable charge cloud defined
by a set of multipole moments and (hyper)polarizabilities to an applied electrostatic
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field), we use in this paper a quantum-mechanical description. Thus, the energy E(λ)
is interpreted as the lowest eigenvalue of the perturbed Hamiltonian

Ĥ(λ) = Ĥ + λŴ , (9)

describing a given N -electron system (in our case, the HF molecule) in the presence
of an external electrostatic field characterized by the parameter λ. Here, Ĥ ≡ Ĥ(0) is
the unperturbed Hamiltonian for a molecule in the absence of the field and Ŵ is the
pertinent multipole moment operator corresponding to the applied field. In our case,
Ŵ = −µ̂z when λ = F z and Ŵ = −Θ̂zz when λ = (1/3)F zz . We assume that the
electronic wave function |Ψ(λ)〉 for a molecule in the field, being a solution of the
Schrödinger equation,

Ĥ(λ)|Ψ(λ)〉 = E(λ)|Ψ(λ)〉, (10)

can be represented by the CC exponential ansatz,

|Ψ(λ)〉 = eT̂ (λ)|Φ0〉, (11)

where |Ψ(0)〉 ≡ |Ψ〉 = eT̂ |Φ0〉 is the CC solution of the unperturbed (field-free)
problem,

ĤN |Ψ〉 = ∆E|Ψ〉, ∆E = E(0)− 〈Φ0|Ĥ |Φ0〉. (12)

Here, |Φ0〉 is the independent particle model (in our case, restricted Hartree–Fock
or RHF for short) reference configuration, T̂ (λ) and T̂ are the cluster operators for
the perturbed (equation (10)) and unperturbed (equation (12)) problems, and ĤN ≡
ĤN (0) = Ĥ − 〈Φ0|Ĥ|Φ0〉 is the unperturbed (zero-order) Hamiltonian in the normal
product form relative to the Fermi vacuum |Φ0〉. In order to solve equation (10), or
its normal product analog,

ĤN (λ)|Ψ(λ)〉 = ∆E(λ)|Ψ(λ)〉, ∆E(λ) = E(λ) − 〈Φ0|Ĥ(λ)|Φ0〉, (13)

we use the LRCC formalism of Monkhorst [25], in which both the cluster operator
T̂ (λ) and the energy ∆E(λ) are expanded in a power series in terms of the parameter λ,

T̂ (λ) =
∞∑
n=0

λnT̂ (n), (14)

∆E(λ) =
∞∑
n=0

λn∆E(n), ∆E(n) =
1
n!

(
∂n∆E(λ)
∂λn

)
λ=0

, (15)

where T̂ (0) ≡ T̂ is the cluster operator describing the unperturbed wave function
|Ψ〉 = |Ψ(0)〉 and ∆E(0) = ∆E is the unperturbed energy relative to the reference
energy 〈Φ0|Ĥ|Φ0〉, equation (12) (in our case, correlation energy since we use the RHF
reference |Φ0〉). Clearly, there is a simple relationship between quantum-mechanical
corrections ∆E(n) and their classical counterparts E(n) defining expansion (2),

E(0) = ∆E(0) + 〈Φ0|Ĥ |Φ0〉, (16)
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E(1) = ∆E(1) + 〈Φ0|Ŵ |Φ0〉, (17)

E(n) = ∆E(n) (n > 2). (18)

Thus, we can easily relate the LRCC corrections ∆E(n) with various molecular proper-
ties (cf. equations (3)–(8)). At this point, the magnitude of the radius of convergence
of expansions (14) and (15) is irrelevant, as long as it does not vanish. This is, in
fact, one of the reasons for using the LRCC theory. In this theory, the corrections
∆E(n) are determined by solving a recursive system of equations, which we describe
below, rather than by numerically differentiating ∆E(λ) at λ = 0 (cf. equation (15)).
Note also that when the exact full CC wave function is used, i.e., when no further
approximations are made for the cluster components T̂ (n), the radius of convergence
of the LRCC formalism and that of the expansion (2) are the same.

To solve equations (12)–(15) for the unknown corrections T̂ (n) and E(n), some
approximation must be introduced. We thus restrict each T (n) to its one- and two-body
cluster components (CCSD approximation), i.e.,

T̂ (n) ≈ T̂ (n)
CCSD = T̂ (n)

1 + T̂ (n)
2 . (19)

Numerous results in the literature indicate that CCSD is a very good approximation.
Indeed, it yields a remarkably good description of the potential energy curve and
property functions for the HF molecule studied in this paper [22,33,38]. The resulting
system of equations for T̂ (n)

i (i = 1, 2) and ∆E(n) then takes the form(
ĤNeT̂

(0))
C
|Φ0〉= ∆E(0)|Φ0〉, n = 0, (20)(

ĤNeT̂
(0)
T̂ (1) + ŴN eT̂

(0))
C
|Φ0〉= ∆E(1)|Φ0〉, n = 1, (21)(

ĤN eT̂
(0)

Ω̂(n) + ŴN eT̂
(0)

Ω̂(n−1))
C
|Φ0〉= ∆E(n)|Φ0〉, n > 2, (22)

with

Ω̂(n) = T̂ (n) +
∑

k1, . . . , kn−1 > 0∑n−1

j=1
jkj = n

n−1∏
i=1

(ki!)
−1(T̂ (i))ki (n > 1),

(23)
Ω̂(0)≡ 1,

where T̂ (n) is given by equation (19), ŴN is the normal product form of Ŵ , and C
designates the connected part of a given expression.

Equations (20)–(23), along with equation (19), define the LRCCSD formalism
of [21,22]. As described in [22], we solve equations (20)–(23) recursively (first, the
original unperturbed problem, equation (20), then, the subsequent first and higher-order
problems, equations (21) and (22); using in each case a suitably designed iterative
algorithm). Note that except for the unperturbed problem (20), each equation of order
n (n > 1) is linear in the unknown cluster components T̂ (n)

i (i = 1, 2), reflecting
the linear response nature of the approach. Although the recursive formulation of the
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LRCCSD theory, given by equations (20)–(23), does not always represent an optimal
choice (one could, for example, exploit Wigner’s (2n + 1) rule instead of solving for
T̂ (n) to calculate ∆E(n) of the same order; cf. [21,22]), it certainly provides a very
transparent formulation, enabling an easy encoding and actual computation of ∆E(n)

for very high orders (n ∼ 10–20). This is particularly important when we wish to
estimate radii of convergence of series (2) by examining its high-order terms.

Detailed LRCCSD equations were given in [21,22]. Their solution gives the
CCSD approximation for the exact corrections ∆E(n), equation (15), and through
relationships (3)–(8) and (16)–(18), also for the corresponding static properties. In
particular, the LRCCSD value of the dipole or quadrupole moment (or, for that matter,
of any first-order property) represents an approximation to the corresponding quantum-
mechanical expectation value 〈Ψ|Ŵ |Ψ〉/〈Ψ|Ψ〉. Only in the exact (full CC) case, in
which the Hellmann–Feynman theorem is satisfied, we can write

〈Ψ|Ŵ |Ψ〉
〈Ψ|Ψ〉 = ∆E(1) + 〈Φ0|Ŵ |Φ0〉 (24)

(cf. [21,22,25]). We believe, however, that the CCSD approach provides us with
very good estimates of the corrections ∆E(n), so that our estimates of the radii of
convergence based on these values are also reasonable. Since CCSD is often used to
evaluate molecular properties via finite-field approach, our estimates of the radii of
convergence of series (2) should tell us a good deal about the appropriateness of this
or other approximate quantum-chemical methods for property function determination.
Thanks to the size consistency of CC theory, we can examine the dependence of the
radii of convergence of expansions (2) or (15) on the nuclear geometry, including the
difficult bond breaking region. This may not always be possible using other methods
(e.g., finite-order many-body perturbation theory or limited configuration interaction).

As in most quantum-chemical approaches, there is one more approximation to be
invoked, namely that of the finite basis set. To define the reference (RHF) configuration
|Φ0〉 and the cluster operators T̂ (n)

i (i = 1, 2), we employ the finite atomic orbital (AO)
basis set. Consequently, we are not solving the original infinite-dimensional eigenvalue
problem (13) (not even its infinite-dimensional CCSD counterpart), but rather its finite-
dimensional algebraic analog defined by the basis set. It is well known that large and
flexible basis sets must be used in realistic property calculations. On the other hand,
it may not be possible to calculate the corrections ∆E(n) for large values of n (say,
n > 5) with the available computer codes, when employing large basis sets. At the
same time (see the Introduction), the radii of convergence estimated from the first few
terms of equations (2) or (15) may be incorrect. We will thus consider a relatively
small, albeit reasonable, basis set when calculating high-order corrections ∆E(n). Our
experience indicates that the qualitative behavior of quantum-mechanical systems does
not substantially change with the basis set. In fact, this is what we observed in our
recent study of property functions of HF [22] (relevant for this paper), where we
showed that there is no qualitative difference in the form of the µz , αzz, βzzz, γzzzz,
Θzz, and Czz,zz property functions obtained with small and large basis sets. We
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thus believe that our estimates of the radii of convergence of energy expansion (2),
obtained with a relatively small basis set, indicate the qualitatively correct dependence
on the nuclear geometry and are in fact very reasonable, even in a quantitative sense.
Mathematical techniques used to calculate these radii are described below.

2.2. Numerical determination of the radii of convergence

Once the corrections ∆E(n) or E(n) are known, particularly those for sufficiently
large n, one should be able to determine the radii of convergence of power series
(2) or (15) by using the available convergence criteria. Perhaps the most commonly
used criterion is that of D’Alembert (the well-known ratio test) which, when applied
to equation (15), yields the following expression for the radius of convergence R:

R = RA ≡ lim
n→∞

rA
n , (25)

where

rA
n =

∣∣∣∣ ∆E(n)

∆E(n+1)

∣∣∣∣. (26)

When the above limit does not exist or when the sequence rA
n , equation (26),

displays a highly irregular behavior for the available corrections ∆E(n), so that it is
difficult to estimate the limit (25) numerically, one can use the well-known Cauchy–
Hadamard formula,

R = RCH ≡ lim inf
n→∞

rCH
n , (27)

with

rCH
n =

∣∣∆E(n)
∣∣−1/n

. (28)

When we do not have enough coefficients ∆E(n), which may be the case for highly
stretched nuclear geometries and for some types of the perturbation Ŵ (see below), we
can use the fact that the differentiation of a power series produces a new series, whose
radius of convergence is unaltered (see [27,28]). Application of the Cauchy–Hadamard
formula to a k-times differentiated power series (15) gives us one more useful formula
for the radius of convergence of expansion (15), namely,

R = RGCH(k) ≡ lim inf
n→∞

rGCH
n (k), (29)

where

rGCH
n (k) =

(
n!|∆E(n)|
(n− k)!

)−1/(n−k)

, (30)

which can be regarded as a generalization of equation (27) to nonzero values of k (for
k = 0, equation (29) reduces to equation (27), i.e., rGCH

n (0) = rCH
n ).

The usefulness of formula (29) stems from the fact that a differentiated power
series may approach the desired limit faster or in a different, perhaps more regular,
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way, allowing us to determine the required inferior limit of equation (29) from fewer
corrections ∆E(n). In fact, formula (29) can be generalized to noninteger nonnegative
k values by using the Euler gamma function, in which case we can always find the
“optimum” value of k that guarantees the fastest convergence. Alternatively, we can
find two consecutive values of k, which yield decreasing and increasing subsequences
of the sequences rGCH

n (k), enabling us to determine the upper and lower bounds for
the radius of convergence R. This has been amply documented in [27,28], where for-
mula (29) was used to determine the radii of convergence of the Rayleigh–Schrödinger
perturbation expansions for the Pariser–Parr–Pople and Hubbard models of benzene
by varying k and by estimating the corresponding inferior limits.

The generalized Cauchy–Hadamard expression (29), albeit very useful, may not
always give us the desired estimate of R. It is thus worthwhile to try an approach
based on Padé approximants. In this case, we first construct the Padé approximants
ε[L1,L2](λ) to the truncated power series (15), i.e., to

∆EM (λ) =
M∑
n=0

λn∆E(n), (31)

where L1 + L2 = M , under the condition

∆E(λ)− ε[L1,L2](λ) = O(λM+1). (32)

We recall that [3–5,39]

ε[L1,L2](λ) =
PL1(λ)
QL2(λ)

, (33)

where PL1 (λ) and QL2(λ) are the polynomials of orders L1 and L2, respectively,

PL1 (λ) =

L1∑
m=0

pmλ
m, (34)

QL2(λ) = 1 +

L2∑
m=1

qmλ
m, (35)

whose coefficients can be found by solving the corresponding systems of linear equa-
tions involving ∆E(n), n = 0, 1, 2, . . . ,M . Padé approximants ε[L1,L2](λ) are expected
to provide a good approximation to ∆E(λ), even in the region of λ where series (15)
diverges and in the vicinity of its singular points.

The poles of the diagonal Padé approximants ε[L,L](λ), where L = M/2, con-
verge to singularities of ∆E(λ) as L (or M ) increases [3–5,39]. It is thus sufficient
to determine zeros of the denominators QL(λ) in order to find an estimate of R. The
distance of the nearest zero of QL(λ) from the origin (in the complex λ plane) gives
then an estimate of R, which we designate as RPadé (the larger the value of L, the
better the estimate of R). Obviously, we exclude those zeros of QL(λ) which turn out
to be zeros of PL(λ), since we look for the poles of ε[L,L](λ). In principle, the same
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applies to the off-diagonal approximants ε[L1,L2](λ), whose closest poles to the origin
in the complex λ plane (zeros of QL2(λ) which are not the roots of PL1(λ)) should
give us a reasonable estimate of R as long as L1 and L2 are reasonably large.

The effectiveness of the above procedure is well known [3–5,39] and there are
good reasons to believe that a moderate number of corrections ∆E(n) is sufficient to
provide a good estimate of the radius of convergence R. We should thus be able to
determine RPadé from the first few entries ε[L,L](λ) or ε[L1,L2](λ) of the Padé table,
even though we are not going to base our considerations on the lowest available entries
ε[1,1](λ) or ε[2,2](λ) alone, whenever possible. In view of the above remarks we must,
at least in principle, look at the poles of ε[L,L](λ) for a few values of L (or L1 and
L2) in order to get an idea whether those poles reasonably converge.

All four methods (D’Alembert ratio test, equations (25) and (26), Cauchy–
Hadamard formulas, equations (27)–(30), and the Padé approximant method, equa-
tions (33)–(35)) are exploited in this paper to estimate the radii of convergence of
expansion (15). Comparing the results obtained by these various methods should give
us a good idea about their mutual consistency and thus about the reliability of obtained
radii.

3. Results and discussion

3.1. Computational details

As mentioned in the introduction, our calculations of the radii of convergence
were performed for the HF molecule with two different types of the field: the dipolar
field along the internuclear z axis, λ = F z , corresponding to Ŵ = −µ̂z, and the
quadrupolar field, λ = (1/3)F zz , corresponding to Ŵ = −Θ̂zz . The origin of the
coordinate system was placed at the molecular center of mass, with the F and H atoms
located on the negative and positive sides of the z axis, respectively.

We probed three internuclear distances r: the experimental equilibrium distance
r = re = 1.7328 a.u., three times the equilibrium distance, r = 3re = 5.1984 a.u.,
and five times the equilibrium distance, r = 5re = 8.6640 a.u. The equilibrium bond
length is the distance at which most finite-field or “analytical” property calculations
are performed. The internuclear separation r = 3re is the distance where the potential
energy curve for HF begins to approach its dissociation limit, resulting in dramatic
changes in the values of hyperpolarizabilities βzzz and γzzzz, and substantial changes
in the values of αzz . This is also a region where the first signs of the unstable behavior
of the finite-field procedure using numerical differentiation of energy ∆E(λ) begin to
manifest themselves [22]. Finally, the largest internuclear separation, r = 5re, is
well inside the bond breaking region, where the finite-field procedure can hardly be
used to determine βzzz or γzzzz, even when the exact, full configuration interaction
(or full CC) energies ∆E(λ) are used for numerical differentiation [22]. In fact, for
3re 6 r < 5re we observe an almost complete loss of accuracy, even when the energy
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is differentiated only twice, making the resulting αzz values rather inaccurate (only
one significant digit can be guaranteed; see [22]).

The CCSD and LRCCSD calculations, required to generate the zero- and higher-
order energy corrections, ∆E(0) and ∆E(n) (n > 1), respectively, were carried out
using our own codes [21,22,32] employing the orthogonally spin-adapted formulation
of CC theory [1,26,30,31]. The zero-order CCSD equations were converged to fourteen
decimal places for the energy (fifteen decimal figures for the CC amplitudes), whereas
the LRCCSD equations for each order n (n > 1) were converged to twelve decimal
places for the energy corrections ∆E(n), unless the energy values were so large (as it
happens for larger values of n) that we had to reduce the above thresholds to fewer
decimals while maintaining the accuracy of fourteen or fifteen significant figures. These
tight convergence criteria were imposed to maximize the accuracy of the resulting
energy corrections ∆E(n).

The initial RHF calculations were performed with GAMESS [15,36]. GAMESS was
also used to obtain the standard one- and two-electron atomic and molecular integrals.
The property one-electron integrals, defining the operator Ŵ , were obtained using our
own routines [21,22]. In the post Hartree–Fock CC calculations all ten electrons were
correlated.

The ab initio results for the energy corrections ∆E(n) were transferred to a MAPLE

[9–11] session in order to evaluate the desired expressions for rA
n , rCH

n , and rGCH
n (k),

as well as to compute Padé approximants ε[L1,L2](λ). Poles of ε[L1,L2](λ) (zeros of
QL2(λ)) were evaluated using MAPLE commands solve and fsolve. In each case,
we verified whether a given root of the denominator QL2(λ) is or is not a zero of
the numerator PL1(λ) (within the available numerical accuracy). We also analyzed
the effectiveness of Padé approximants in representing ∆EM (λ), equation (31), in the
vicinity of the computed singular points.

To obtain high-order corrections ∆E(n), with n as large as 20, we used the
relatively small [4s2p/2s] double zeta (DZ) basis set of Dunning [14]. As pointed out
in section 2, the qualitative behavior of various property functions barely changes when
different (small and large) basis sets are used [21,22]. The comparison of our results
obtained here with a DZ basis set and of the estimates of the radii of convergence
based on realistic values for the first through fourth-order properties from our recent
study of the HF molecule [22], where we employed a medium-size [5s3p2d/3s2p]
basis set of Sadlej that was specifically designed for the calculation of static molecular
properties [34], is made at the end of section 3.2.

3.2. Results

Results of our calculations for the DZ HF model are shown in tables 1−6. We
present as many energy corrections ∆E(n) as we could generate in reasonable time
with our computer facilities and programs. The behavior of the D’Alembert, Cauchy–
Hadamard, and generalized Cauchy–Hadamard sequences rA

n , rCH
n , and rGCH

n (k) (with
k = 1 and 2) for r = re, r = 3re, and r = 5re is shown in tables 1−3, respectively.
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Table 1

The calculated LRCCSD energy corrections ∆E(n) and the corresponding D’Alembert, Cauchy–Hadamard, and generalized Cauchy–Hadamard
sequences rA

n, rCH
n , and rGCH

n (k) (with k = 1, 2), respectively, for the DZ HF molecule with the equilibrium internuclear separation r = re =
1.7328 a.u. Two types of the perturbation Ŵ (Ŵ = −µ̂z and Ŵ = −Θ̂zz) are considered. If the behavior of a given sequence is sufficiently
regular, the resulting estimate of the radius of convergence R (or of its lower or upper bound) is also given. The question mark indicates that no

estimate of R can be given due to highly irregular behavior of the corresponding sequence rXn (X = A, CH, GCH).

Ŵ = −µ̂z Ŵ = −Θ̂zz

n ∆E(n) rA
n rCH

n rGCH
n (1) rGCH

n (2) ∆E(n) rA
n rCH

n rGCH
n (1) rGCH

n (2)

0 −0.136696 3.416464 −0.136696 5.096151
1 0.040011 0.019147 24.993207 0.026823 0.005554 37.280982
2 −2.089640 0.715904 0.691774 0.239276 −4.829456 0.392000 0.455041 0.103531
3 2.918883 0.619650 0.699726 0.337933 0.057099 12.320029 0.249669 0.432975 0.164488 0.013528
4 −4.710538 1.236521 0.678785 0.375800 0.133007 −49.345383 0.256322 0.377301 0.171750 0.041095
5 3.809508 0.334579 0.765290 0.478674 0.235885 192.513562 0.327901 0.349227 0.179532 0.063802
6 11.385963 0.170882 0.666712 0.429631 0.232609 −587.109448 0.750516 0.345579 0.195266 0.086804
7 −66.630683 0.383289 0.548877 0.359091 0.204463 782.273900 0.125304 0.386067 0.238190 0.124933
8 173.839378 1.020674 0.524785 0.355603 0.216410 6242.988819 0.091276 0.335410 0.213200 0.119143
9 −170.318216 0.229904 0.565044 0.399772 0.260564 −68397.108925 0.165112 0.290251 0.188947 0.110649

10 −740.824629 0.162931 0.516450 0.371562 0.249462 414246.443535 0.238131 0.274331 0.183971 0.113126
11 4546.873188 0.359400 0.465030 0.338914 0.232684 1739577.214340 0.460870 0.270824 0.186989 0.120170
12 −12651.272206 0.983768 0.455151 0.338043 0.238632 3774548.167896 0.231451 0.283092 0.201370 0.134976
13 12860.019161 0.209427 0.482953 0.367058 0.267336 16308161.804953 0.062484 0.278740 0.202366 0.139621
14 61405.625851 0.158501 0.454972 0.349553 0.258609 −260996162.626416 0.135614 0.250502 0.183824 0.128906
15 −387413.815338 0.349618 0.424087 0.328729 0.246325 1924555818.726228 0.192019 0.240461 0.178989 0.127994
16 1108106.562071 0.979859 0.419000 0.328665 0.250166 −10022752773.61886 0.237104 0.179058 0.130505
17 −1130883.711380 0.194093 0.440470 0.350557 0.271728
18 −5826494.568038 0.157338 0.420866 0.337439 0.264122
19 37031738.613476 0.345815 0.399626 0.322464 0.254524
20 −107085270.666431 0.396747 0.322781 0.257385
R ? < 0.40 0.32 > 0.25 ? < 0.24 0.18 > 0.13
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Table 2
Same as table 1 for r = 3re = 5.1984 a.u.

Ŵ = −µ̂z Ŵ = −Θ̂zz

n ∆E(n) rA
n rCH

n rGCH
n (1) rGCH

n (2) ∆E(n) rA
n rCH

n rGCH
n (1) rGCH

n (2)

0 −0.287792 0.132316 −0.287792 0.028447
1 2.175044 1.009574 0.459761 10.116845 0.232278 0.098845
2 −2.154417 0.069023 0.681295 0.232081 −43.554916 0.011492 0.151524 0.011480
3 −31.212952 0.047489 0.317606 0.103341 0.005340 −3790.081386 0.010839 0.064138 0.009378 0.000044
4 − 657.260224 0.049796 0.197499 0.072455 0.011260 −349661.050695 0.011171 0.041123 0.008942 0.000488
5 −13198.954587 0.050174 0.149931 0.062391 0.015589 −31300418.505015 0.011337 0.031688 0.008941 0.001169
6 −263061.623393 0.051377 0.124927 0.057591 0.018867 −2760899436.1687 0.011623 0.026699 0.009040 0.001864
7 −5120232.377917 0.052343 0.110035 0.055073 0.021552 −237545979473.59 0.023708 0.009187 0.002513
8 −97820332.461891 0.053571 0.100276 0.053641 0.023818
9 −1826010539.69350 0.054949 0.093529 0.052848 0.025799

10 −33231227422.486 0.088684 0.052460 0.027576
R 0.05 < 0.09 0.05 > 0.027 0.01 < 0.024 0.009 > 0.002

Table 3
Same as tables 1 and 2 for r = 5re = 8.6640 a.u. The question mark between parentheses indicates that too few terms are available

to give a definite estimate of the radius of convergence R.

Ŵ = −µ̂z Ŵ = −Θ̂zz

n ∆E(n) rA
n rCH

n rGCH
n (1) rGCH

n (2) ∆E(n) rA
n rCH

n rGCH
n (1) rGCH

n (2)

0 −0.363063 0.104363 −0.363063 0.013591
1 3.478861 9.151822 0.287450 26.713446 3.067891 0.037434
2 −0.380128 0.085343 1.621942 1.315347 8.707430 0.004553 0.338887 0.057422
3 4.454134 0.043774 0.607779 0.273563 0.037418 1912.423055 0.005727 0.080564 0.013202 0.000087
4 101.752172 0.043258 0.314858 0.134937 0.028618 333908.548124 0.041600 0.009080 0.000500
5 2352.232803 0.043697 0.211692 0.096026 0.027701
6 53831.032950 0.162740 0.079098 0.028052
R 0.04 < 0.16 < 0.08 0.03 < 0.01(?) < 0.04 < 0.01 > 0.0005(?)
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Table 4
Poles of Padé approximants ε[L1,L2](λ) nearest to the origin (λ[L1,L2]

c ) and their distance from the origin in the complex plane resulting from the
LRCCSD calculations of the corrections ∆E(n) for the HF DZ molecule and Ŵ = −µ̂z . The results are given for three internuclear separations,
r = re = 1.7328 a.u., r = 3re = 5.1984 a.u., and r = 5re = 8.6640 a.u. The corresponding estimates of the radii of convergence R are designated

by RPadé and (a, b) is the complex number a+ bi.

r = re r = 3re r = 5re

L1 = L2 = L λ[L1,L2]
c |λ[L1,L2]

c | L1 = L2 = L λ[L1,L2]
c |λ[L1,L2]

c | L1 L2 λ[L1,L2]
c |λ[L1,L2]

c |
1 −0.019147 0.019147 1 −1.009574 1.009574 1 1 −9.151822 9.151822
2 −0.630084 0.630084 2 0.047783 0.047783 2 2 0.042857 0.042857
3 −0.303079 0.303079 3 0.050290 0.050290 3 3 (0.041710, 0.003866) 0.041888
4 (−0.257157, 0.226822) 0.342897 4 (0.049257, 0.006835) 0.049729 2 4 0.043690 0.043690
5 (−0.257699, 0.231967) 0.346724 5 (0.050639, 0.007403) 0.051177 4 2 0.043494 0.043494
6 (−0.256484, 0.227760) 0.343013
7 (−0.226261, 0.218330) 0.314423
8 (−0.256484, 0.227760) 0.343013
9 (−0.226244, 0.218520) 0.314543

10 (−0.256484, 0.227760) 0.343013
RPadé 0.32–0.34 0.05 0.04

Table 5
Same as table 4 for Ŵ = −Θ̂zz . The question mark between parentheses indicates that too few terms are available to determine R.

r = re r = 3re r = 5re

L1 = L2 = L λ[L1,L2]
c |λ[L1,L2]

c | L1 L2 λ[L1,L2]
c |λ[L1,L2]

c | L1 L2 λ[L1,L2]
c |λ[L1,L2]

c |
1 −0.005554 0.005554 1 1 −0.232278 0.232278 1 1 3.067891 3.067891
2 −0.279252 0.279252 2 2 0.010841 0.010841 2 2 0.005727 0.005727
3 0.154636 0.154636 3 3 0.011522 0.011522 1 3 0.035991 0.035991
4 (−0.192966, 0.090780) 0.213253 3 4 0.011638 0.011638 3 1 0.005727 0.005727
5 −0.186831 0.186831 4 3 (0.009885, 0.000444) 0.009895
6 (−0.192966, 0.090780) 0.213253
7 (−0.164518, 0.092070) 0.188529
8 (−0.192966, 0.090780) 0.213253

RPadé 0.19–0.21 0.01 < 0.01(?)
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Table 6
Summary of the results for the DZ HF model: estimates of the radii of convergence of
series (15) for various internuclear separations r obtained using the LRCCSD method and
the D’Alembert, Cauchy–Hadamard, and generalized Cauchy–Hadamard convergence tests,
and Padé approximants. re = 1.7328 a.u. is the equilibrium bond length and the question

mark indicates that the result is uncertain or could not be obtained.
r = re r = 3re r = 5re

R Ŵ = −µ̂z Ŵ = −Θ̂zz Ŵ = −µ̂z Ŵ = −Θ̂zz Ŵ = −µ̂z Ŵ = −Θ̂zz
RA ? ? 0.05 0.01 0.04 < 0.01(?)
RCH < 0.40 < 0.24 < 0.09 < 0.024 < 0.16 < 0.04
RGCH(1) 0.32 0.18 0.05 0.009 < 0.08 < 0.01
RGCH(2) > 0.25 > 0.13 > 0.027 > 0.002 0.03 > 0.0005(?)
RPadé 0.32–0.34 0.19–0.21 0.05 0.01 0.04 < 0.01(?)

Table 7
The LRCCSD corrections ∆E(n), n = 0–4, the corresponding D’Alembert, Cauchy–Hadamard, and generalized Cauchy-Hadamard sequences rA

n, rCH
n ,

and rGCH
n (1), and the distance of the pole λ[2,2]

c of the Padé approximant ε[L1,L2](λ) from the origin in the complex plane resulting from the accurate
calculations of the µz , αzz , βzzz, and γzzzz functions for HF (Ŵ = −µ̂z) using Sadlej’s basis set [34] (see [22]). re = 1.7328 a.u. is the equilibrium
bond length. Whenever possible, the rough estimate of the radius of convergence R, or of its lower or upper bound, corresponding to D’Alembert,
Cauchy–Hadamard, and generalized Cauchy–Hadamard convergence criteria, is suggested. The question mark indicates that the result is very uncerta in

or that no estimate of R can be suggested on the basis of the available results.

r = re r = 3re r = 5re

n ∆E(n) rA
n rCH

n rGCH
n (1) ∆E(n) rA

n rCH
n rGCH

n (1) ∆E(n) rA
n rCH

n rGCH
n (1)

0 −0.215186 3.767790 −0.335996 0.151410 −0.406679 0.113083
1 0.057112 0.017515 17.509455 2.219121 0.271398 0.450629 3.596281 0.842940 0.278065
2 −3.260698 1.982305 0.553789 0.153341 −8.176638 0.086825 0.349714 0.061150 −4.266355 0.499124 0.484141 0.117196
3 1.644902 0.105930 0.847136 0.450163 −94.173572 0.042454 0.219798 0.059494 −8.547681 0.024628 0.489084 0.197476
4 −15.52818 0.503756 0.252507 −2218.25635 0.145713 0.048303 −347.074241 0.231683 0.089641
R ? < 0.5(?) ? < 0.05 < 0.15 < 0.05 < 0.03 < 0.23 < 0.09
|λ[2,2]
c | 0.424531 0.045138 0.036627
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Poles of Padé approximants ε[L1,L2](λ) that are closest to the origin, designated as
λ[L1,L2]
c , are listed for various values of L1 and L2 in tables 4 (for Ŵ = −µ̂z) and 5

(for Ŵ = −Θ̂zz). We usually present the diagonal entries ε[L,L](λ), unless too few
energy corrections were available (in view of a very slow convergence of the iterative
procedure used to generate ∆E(n)), in which case the off-diagonal entries ε[L1,L2](λ),
with L1 6= L2, are provided as well. Table 6 then summarizes our calculations of the
radii of convergence for the DZ HF molecule.

Let us start with the analysis of the convergence patterns for various convergence
tests that we employed. In spite of a large number of corrections ∆E(n) that are
available to us for r = re, the D’Alembert ratio test, equations (25) and (26), seems
to be inconclusive. For both types of the perturbation Ŵ considered, the behavior
of the sequence rA

n is rather erratic (see table 1). As a result, it is difficult to find
the limit RA, equation (25). A more favorable situation is found when we investigate
stretched geometries. Surprisingly enough, in spite of the fact that fewer corrections
∆E(n), n > 1, are available to us for r = 3re (ten and seven) or r = 5re (six and
four), the sequences rA

n seem to stabilize rather fast (see tables 2 and 3). As a result,
quite reasonable predictions of the radii of convergence based on equation (25) can be
made when r = 3re or 5re. The only exception is the case r = 5re, Ŵ = −Θ̂zz when
four corrections ∆E(n) do not suffice for the ratio test.

The Cauchy–Hadamard criterion, equations (27) and (28), is in general more
useful, since the sequences rCH

n decrease almost monotonically for all the geometries
and perturbations Ŵ considered (slowly for r = re, faster for r = 3re or 5re). As a
result, the Cauchy–Hadamard formula allows us to find the upper bounds of the radii
of convergence characterizing the series (15).

The regular behavior of the Cauchy–Hadamard sequences rCH
n can be quite ef-

fectively stabilized by considering differentiated series (15) (the generalized Cauchy–
Hadamard criterion with k = 1, equations (29) and (30)). As a result, we can either
identify the required inferior limit (29) (for r = re and r = 3re) or find an upper bound
to R (for r = 5re) thanks to a decreasing behavior of rGCH

n (1). When the series (15)
is differentiated twice (k = 2 in equations (29) and (30)), the corresponding sequences
rGCH
n (2) are usually monotonically increasing (almost certainly for r = re and 3re,

and perhaps for r = 5re, Ŵ = −Θ̂zz) allowing us to find the lower bounds to R
(see tables 1−3). We must remember, however, that each differentiation reduces the
number of the available ∆E(n) corrections by one. As a result, no definite conclusions
can be drawn when only six or four terms ∆E(n), n > 1, are available (see the results
for r = 5re in table 3).

The Cauchy–Hadamard formula, equations (27) and (28), and, particularly, its
generalized analog with k = 1, equations (29) and (30), give results which agree re-
markably well with those obtained with Padé approximants (tables 4 and 5). In fact,
no contradiction was ever found between the results obtained using Padé approximants
and other methods, including the D’Alembert ratio test. Nonetheless, Padé approxi-
mants should be the method of choice, since they yield very stable values of |λ[L1,L2]

c |,
even with a relatively few terms ∆E(n). In fact, except for the r = re case, the
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ε[2,2](λ) approximant gives usually the same (numerically) result as its higher-order
analogs ε[L1,L2](λ) with L1,L2 > 3. For r = re, one should consider the approximants
ε[L,L](λ) with L = 3 or 4, indicating that one must be careful with the results obtained
using low-order entries with L = 1 or 2 (see tables 4 and 5).

Our results show that the radius of convergence of expansions (2) or (15) dra-
matically decreases with the increasing internuclear separation r. For r = 3re or 5re,
the radii of convergence become so small that the fields λ that are typically used in
the numerical differentiation of the finite-field approach may fall outside the range of
convergence. This particularly applies to the third- and fourth-order properties (e.g.,
β and γ), where three- and four-fold differentiations of the energy ∆E(λ) are required
to extract the property values, thus forcing one to use relatively large (of the order
of 0.01 a.u.) steps ∆λ in the differentiation. Even when the applied fields λ fall
within the interval of convergence (−R,R), they may be too close to the radius of
convergence to guarantee the stability of the numerical differentiation. This is what
we observed in our recent study of the property functions of HF [22], where – for the
sake of comparison – we also exploited the finite-field procedure to calculate µz , αzz ,
βzzz, and γzzzz using the full configuration interaction energy data. We could not find
βzzz and γzzzz for r > 3re, and obtained rather poor estimates even for αzz in the
same region.

The range of convergence is always smaller for the Ŵ = −Θ̂zz case, when
compared with the Ŵ = −µ̂z case, which indicates that nonuniform fields decrease
the range of convergence, sometimes quite substantially. Our results thus agree with
the findings of Larter and Malik [23], who discussed the consequences of this fact for
the fixed-point-charge and finite-field methods. Fixed-point-charge calculations can be
characterized by relatively large field-gradient values, thus putting in doubt the resulting
property values for stretched geometries [23]. In fact, it may be very difficult to apply
the finite-field approach (with, e.g., λ = 1

3F
zz) to calculate quadrupolar properties,

particularly the third- and fourth-order analogs of Czz,zz, for stretched geometries.
Even Czz,zz, regarded as a function of r, may represent a serious problem for the
finite-field approach. From this point of view, the analytical approaches, such as our
LRCC method, seem to be indispensable.

The finite-field method should be easily applicable at near equilibrium geome-
tries, where the corresponding radii of convergence are quite large, making numerical
differentiation very stable and reliable. The same applies to the experimental deter-
mination of molecular properties, using, for example, the Stark or electric resonance
effect, where the applied fields (∼ 10−7 a.u.) are much smaller than the radius of
convergence of expansions (2) or (15). We must note, however, that it is difficult
to extract the information about property functions from experimental data, which
makes any theoretical determination of these functions very desirable (cf. [33,38] and
references therein).

Let us finally comment on the role of basis sets in the calculations of radii of
convergence. In principle, we can evaluate the LRCCSD energy corrections ∆E(n)

using large AO basis sets. Unfortunately, the calculation of ∆E(n) with n > 5 takes
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a rather long time on our computers. We thus use the accurate LRCCSD data for the
µz , αzz, βzzz , and γzzzz functions of HF obtained earlier [22] with a good quality
basis set of Sadlej [34]. These property functions allow us to calculate ∆E(n) with
n = 1, . . . , 4. The corresponding sequences rA

n , rCH
n , and rGCH

n (1) along with the pole
λ[2,2]
c are given in table 7.

As we can see, quite good agreement can be found between the radii of conver-
gence estimated in this way (from the high quality but limited number of data) and
the results obtained with the DZ basis set using larger number of corrections ∆E(n).
We find this to be encouraging as it basically confirms our expectations that the results
obtained with smaller basis sets are at least qualitatively correct.

It would be interesting to examine the radii of convergence of the multiparameter
analogs of the series (2) or (15) (using, for example, N -variable approximants; cf. [23]),
defining the off-diagonal components of tensors α, β, γ, and C, and all components of
A or B, using the results obtained with the DZ (or similar) basis set and higher-order
corrections ∆E(n1,n2,...). This should be feasible thanks to our recursive formulation of
the LRCCSD theory described elsewhere [21,22]. Since the problem of convergence
of the energy expansions describing molecules in external fields is seldom mentioned
in the context of finite-field or fixed-point-charge calculations, not to mention various
experimental studies, we are convinced that some effort should be made in this direction
to verify the accuracy of the resulting properties or property functions.
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